Description | Levetiracetam was first introduced in the US as an adjunctive therapy in the treatment of partial-onset seizures in adults with epilepsy. This second-generation analog of piracetam can be prepared by condensation of (S)-2-aminobutyramide with 4-chlorobutyryl chloride. Although its mechanism of action is not well established, it was shown that [ 3 H]-levetiracetam reversibly binds to a specific site predominantly present in the membranes of the brain. Unlike conventional anticonvulsants such as phenytoin, carbamazepine, valproic acid, phenobarbital, diazepam and clonazepam, compounds structurally-related to levetiracetam, such as piracetam and aniracetam, also have affinity for this site. Levetiracetam reveals a broad and unique profile in animal seizure models, including promising antiepileptogenic properties. Besides being rapidly and almost completely absorbed in man (oral bioavailability>95%), it possesses a favorable pharmacokinetic profile since it is not hepatically metabolized but only partly hydrolized into the inactive carboxylic acid by enzymes in a number of tissues including blood cells, it is minimally bound to plasma proteins (<10%) and does not inhibit or induce hepatic enzymes. Therefore levetiracetam has a low potential for drug interaction, providing a useful alternative as adjunctive therapy to treat seizures refractory to conventional anticonvulsants. |
Chemical Properties | White Crystalline Solid |
Originator | UCB (Belgium) |
Uses | The (S)-enantiomer of the ethyl analog of Piracetam. Used as an anticonvulsant. |
Uses | The (S)-enantiomer of Etiracetam (E932970) and the ethyl analog of Piracetam (P500800). Used as an anticonvulsant. |
Uses | A compound which inhibits burst firing without affecting normal neuronal excitability |
Uses | Used as adjunctive therapy in the treatment of partial onset seizures in adults and children 4 years of age and older with epilepsy. |
Definition | ChEBI: A pyrrolidinone and carboxamide that is N-methylpyrrolidin-2-one in which one of the methyl hydrogens is replaced by an aminocarbonyl group, while another is replaced by an ethyl group (the S enantiomer). An anticonvulsa t, it is used for the treatment of epilepsy in both human and veterinary medicine. |
Manufacturing Process |
(a) Preparation of the (R)-α-methyl-benzylamine salt of (S)-α-ethyl-2-oxo-1- pyrrolidineacetic acid
8.7 kg (50.8 moles) of racemic ()-α-ethyl-2-oxo-1-pyrrolidineacetic acid are suspended in 21.5 liters of anhydrous benzene in a 50 liter reactor. To this suspension is added gradually a solution containing 3.08 kg (25.45 moles) of (R)-(+)-α-methyl-benzylamine and 2.575 kg (25.49 moles) of triethylamine in 2.4 liters of anhydrous benzene. This mixture is then heated to reflux temperature until complete dissolution. It is then cooled and allowed to crystallize for a few hours. 5.73 kg of the (R)-α-methyl-benzylamine salt of (S)-α-ethyl-2-oxo-1-pyrrolidineacetic acid are thus obtained. Melting point: 148°-151°C. Yield: 77.1%. This salt may be purified by heating under reflux in 48.3 liters of benzene for 4 hours. The mixture is cooled and filtered to obtain 5.040 kg of the desired salt. Melting point: 152°-153.5°C. Yield: 67.85%. (b) Preparation of (S)-α-ethyl-2-oxo-1-pyrrolidineacetic acid 5.04 kg of the salt obtained in (a) above are dissolved in 9 liters of water. 710 g of a 30% sodium hydroxide solution are added slowly so that the pH of the solution reaches 12.6 and the temperature does not exceed 25°C. The solution is stirred for a further 20 minutes and the α-methylbenzylamine liberated is extracted with a total volume of 18 liters of benzene. The aqueous phase is then acidified to a pH of 1.1 by adding 3.2 liters of 6 N hydrochloric acid. The precipitate formed is filtered off, washed with water and dried. The filtrate is extracted repeatedly with a total volume of 50 liters of dichloromethane. The organic phase is dried over sodium sulfate and filtered and evaporated to dryness under reduced pressure. The residue obtained after the evaporation and the precipitate isolated previously, are dissolved together in 14 liters of hot dichloromethane. The dichloromethane is distilled and replaced at the distillation rate, by 14 liters of toluene from which the product crystallizes. The mixture is cooled to ambient temperature and the crystals are filtered off to obtain 2.78 kg of (S)-α-ethyl-2-oxo-1-pyrrolidineacetic acid. Melting point: 125.9°C. [α]D20 = -26.4° (c = 1, acetone). Yield: 94.5%. (c) Preparation of (S)-α-ethyl-2-oxo-1-pyrrolidineacetamide 34.2 g (0.2 mole) of (S)-α-ethyl-2-oxo-1-pyrrolidineacetic acid are suspended in 225 ml of dichloromethane cooled to -30°C. 24.3 g (0.24 mole) of triethylamine are added dropwise over 15 minutes. The reaction mixture is then cooled to -40°C and 24.3 g (0.224 mole) of ethyl chloroformate are added over 12 minutes. Thereafter, a stream of ammonia is passed through the mixture for 4 ? hours. The reaction mixture is then allowed to return to ambient temperature and the ammonium salts formed are removed by filtration and washed with dichloromethane. The solvent is distilled off under reduced pressure. The solid residue thus obtained is dispersed in 55 ml toluene and the dispersion is stirred for 30 minutes and then filtered. The product is recrystallized from 280 ml of ethyl acetate in the presence of 9 g of 0.4 nm molecular sieve in powder form 24.6 g of (S)-α-ethyl-2-oxo-1- pyrrolidineacetamide are obtained. Melting point: 115°-118°C. [α]D25 = -89.7° (c = 1, acetone). Yield: 72.3%. |